Adverse listening conditions and memory load drive a common α oscillatory network

J Neurosci. 2012 Sep 5;32(36):12376-83. doi: 10.1523/JNEUROSCI.4908-11.2012.


How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation / methods*
  • Adult
  • Alpha Rhythm / physiology*
  • Auditory Perception / physiology*
  • Female
  • Humans
  • Male
  • Memory, Short-Term / physiology*
  • Nerve Net / physiology*
  • Reaction Time / physiology
  • Young Adult