Objective: Fibrotic diseases such as SSc (systemic sclerosis, scleroderma) are characterized by the abnormal presence of the myofibroblast, a specialized type of fibroblast that overexpresses the highly contractile protein α-smooth muscle actin. Myofibroblasts display excessive adhesive properties and hence exert a potent mechanical force. We aim to identify the precise contribution of adhesive signalling, which requires integrin-mediated activation of focal adhesion kinase (FAK)/src, to fibrogenic gene expression in normal and fibrotic SSc fibroblasts.
Methods: We subject either FAK wild-type and knockout fibroblasts or normal and SSc fibroblasts treated with FAK/src inhibitors to real-time polymerase chain, western blot, cell migration and collagen gel contraction analyses.
Results: FAK operates downstream of both integrin β1 and reactive oxygen species (ROS) to promote the expression of genes involved in matrix production and remodelling, including CCN2, α-smooth muscle actin and type I collagen. Blocking either FAK/src with PP2 or ROS with N-acetyl cysteine alleviates the elevated contractile and migratory capability of lesional SSc dermal fibroblasts.
Conclusions: Excessive adhesive signalling is intimately involved with the fibrotic phenotype of lesional SSc fibroblasts; blocking adhesive signalling or ROS generation may be beneficial in controlling the fibrosis observed in SSc.