Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329
- PMID: 22978491
- PMCID: PMC3484046
- DOI: 10.1186/1471-2164-13-479
Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329
Abstract
Background: Environmental stresses and inhibitors encountered by Saccharomyces cerevisiae strains are the main limiting factors in bioethanol fermentation. Strains with different genetic backgrounds usually show diverse stress tolerance responses. An understanding of the mechanisms underlying these phenotypic diversities within S. cerevisiae populations could guide the construction of strains with desired traits.
Results: We explored the genetic characteristics of the bioethanol S. cerevisiae strain YJS329 and elucidated how genetic variations in its genome were correlated with specified traits compared to similar traits in the S288c-derived strain, BYZ1. Karyotypic electrophoresis combined with array-comparative genomic hybridization indicated that YJS329 was a diploid strain with a relatively constant genome as a result of the fewer Ty elements and lack of structural polymorphisms between homologous chromosomes that it contained. By comparing the sequence with the S288c genome, a total of 64,998 SNPs, 7,093 indels and 11 unique genes were identified in the genome of YJS329-derived haploid strain YJSH1 through whole-genome sequencing. Transcription comparison using RNA-Seq identified which of the differentially expressed genes were the main contributors to the phenotypic differences between YJS329 and BYZ1. By combining the results obtained from the genome sequences and the transcriptions, we predicted how the SNPs, indels and chromosomal copy number variations may affect the mRNA expression profiles and phenotypes of the yeast strains. Furthermore, some genetic breeding strategies to improve the adaptabilities of YJS329 were designed and experimentally verified.
Conclusions: Through comparative functional genomic analysis, we have provided some insights into the mechanisms underlying the specific traits of the bioenthanol strain YJS329. The work reported here has not only enriched the available genetic resources of yeast but has also indicated how functional genomic studies can be used to improve genetic breeding in yeast.
Figures
Similar articles
-
Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains.Appl Microbiol Biotechnol. 2013 Mar;97(5):2067-76. doi: 10.1007/s00253-013-4698-z. Epub 2013 Jan 24. Appl Microbiol Biotechnol. 2013. PMID: 23344998
-
Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.FEMS Yeast Res. 2016 Mar;16(2):fov118. doi: 10.1093/femsyr/fov118. Epub 2016 Jan 5. FEMS Yeast Res. 2016. PMID: 26733503
-
Genetic characterization and modification of a bioethanol-producing yeast strain.Appl Microbiol Biotechnol. 2018 Mar;102(5):2213-2223. doi: 10.1007/s00253-017-8727-1. Epub 2018 Jan 15. Appl Microbiol Biotechnol. 2018. PMID: 29333587
-
Functional genomics of wine yeast Saccharomyces cerevisiae.Adv Food Nutr Res. 2007;53:65-121. doi: 10.1016/S1043-4526(07)53003-2. Adv Food Nutr Res. 2007. PMID: 17900497 Review.
-
Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.World J Microbiol Biotechnol. 2017 May;33(5):94. doi: 10.1007/s11274-017-2259-9. Epub 2017 Apr 12. World J Microbiol Biotechnol. 2017. PMID: 28405910 Review.
Cited by
-
Fermentation innovation through complex hybridization of wild and domesticated yeasts.Nat Ecol Evol. 2019 Nov;3(11):1576-1586. doi: 10.1038/s41559-019-0998-8. Epub 2019 Oct 21. Nat Ecol Evol. 2019. PMID: 31636426 Free PMC article.
-
Global Analysis of Furfural-Induced Genomic Instability Using a Yeast Model.Appl Environ Microbiol. 2019 Aug 29;85(18):e01237-19. doi: 10.1128/AEM.01237-19. Print 2019 Sep 15. Appl Environ Microbiol. 2019. PMID: 31300396 Free PMC article.
-
Draft Genome Sequence of Saccharomyces cerevisiae Strain NCIM3186 Used in the Production of Bioethanol from Sweet Sorghum.Genome Announc. 2015 Jul 30;3(4):e00813-15. doi: 10.1128/genomeA.00813-15. Genome Announc. 2015. PMID: 26227595 Free PMC article.
-
A high-definition view of functional genetic variation from natural yeast genomes.Mol Biol Evol. 2014 Apr;31(4):872-88. doi: 10.1093/molbev/msu037. Epub 2014 Jan 14. Mol Biol Evol. 2014. PMID: 24425782 Free PMC article.
-
Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol.Microb Cell Fact. 2014 Mar 27;13(1):47. doi: 10.1186/1475-2859-13-47. Microb Cell Fact. 2014. PMID: 24670111 Free PMC article.
References
-
- Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res. 2009;19(12):2258–2270. doi: 10.1101/gr.091777.109. - DOI - PMC - PubMed
-
- Kollaras A, Kavanagh JM, Bell GL, Purkovic D, Mandarakas S, Arcenal P, Ng WS, Routledge KS, Selwood DH, Koutouridis P, Paras FE, Milic P, Tirado-Escobar ES, Moore MJ, Bell PJ, Attfield PV. Techno-economic implications of improved high gravity corn mash fermentation. Bioresour Technol. 2011;102(16):7521–7525. doi: 10.1016/j.biortech.2011.04.094. - DOI - PubMed
-
- Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol. 2010;102(3):3020–3027. - PubMed
-
- Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol. 2010;85(4):861–867. doi: 10.1007/s00253-009-2248-5. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
