Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish
- PMID: 22980325
- PMCID: PMC3517662
- DOI: 10.1016/j.chom.2012.08.003
Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish
Abstract
Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures
Comment in
-
Gut microbes make for fattier fish.Cell Host Microbe. 2012 Sep 13;12(3):259-61. doi: 10.1016/j.chom.2012.08.006. Cell Host Microbe. 2012. PMID: 22980321 Free PMC article.
Similar articles
-
Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet.J Agric Food Chem. 2018 Dec 5;66(48):12706-12718. doi: 10.1021/acs.jafc.8b05036. Epub 2018 Nov 20. J Agric Food Chem. 2018. PMID: 30411889
-
The Growth-Promoting Effect of Dietary Nucleotides in Fish Is Associated with an Intestinal Microbiota-Mediated Reduction in Energy Expenditure.J Nutr. 2017 May;147(5):781-788. doi: 10.3945/jn.116.245506. Epub 2017 Mar 29. J Nutr. 2017. PMID: 28356434
-
Visualization of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid.Chem Biol. 2012 Jul 27;19(7):913-25. doi: 10.1016/j.chembiol.2012.05.018. Epub 2012 Jun 28. Chem Biol. 2012. Retraction in: Chem Biol. 2015 Sep 17;22(9):1283. doi: 10.1016/j.chembiol.2015.09.003 PMID: 22749558 Free PMC article. Retracted.
-
[Dietary fatty acids, intestinal microbiota and cancer].Bull Cancer. 2005 Jul;92(7):708-21. Bull Cancer. 2005. PMID: 16123009 Review. French.
-
The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.J Lipid Res. 2013 Sep;54(9):2325-40. doi: 10.1194/jlr.R036012. Epub 2013 Jul 2. J Lipid Res. 2013. PMID: 23821742 Free PMC article. Review.
Cited by
-
Supplementation of tuna hydrolysate and insect larvae improves fishmeal replacement efficacy of poultry by-product in Lates calcarifer (Bloch, 1790) juveniles.Sci Rep. 2021 Mar 2;11(1):4997. doi: 10.1038/s41598-021-84660-5. Sci Rep. 2021. PMID: 33654188 Free PMC article.
-
Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction.Front Physiol. 2022 Aug 12;13:871045. doi: 10.3389/fphys.2022.871045. eCollection 2022. Front Physiol. 2022. PMID: 36035477 Free PMC article. Review.
-
Co-modulation of Liver Genes and Intestinal Microbiome of Largemouth Bass Larvae (Micropterus salmoides) During Weaning.Front Microbiol. 2020 Jun 17;11:1332. doi: 10.3389/fmicb.2020.01332. eCollection 2020. Front Microbiol. 2020. PMID: 32625193 Free PMC article.
-
Microbiome analysis reveals the intestinal microbiota characteristics and potential impact of Procambarus clarkii.Appl Microbiol Biotechnol. 2024 Dec;108(1):77. doi: 10.1007/s00253-023-12914-5. Epub 2024 Jan 10. Appl Microbiol Biotechnol. 2024. PMID: 38204126 Free PMC article.
-
Resveratrol Improves the Digestive Ability and the Intestinal Health of Siberian Sturgeon.Int J Mol Sci. 2022 Oct 9;23(19):11977. doi: 10.3390/ijms231911977. Int J Mol Sci. 2022. PMID: 36233280 Free PMC article.
References
-
- Babin PJ, Vernier JM. Plasma lipoproteins in fish. J Lipid Res. 1989;30(4):467–489. - PubMed
-
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57(1):289–300.
Publication types
MeSH terms
Substances
Grants and funding
- P30 ES010126/ES/NIEHS NIH HHS/United States
- P01 DK078669/DK/NIDDK NIH HHS/United States
- HG4872/HG/NHGRI NIH HHS/United States
- R56 DK093399/DK/NIDDK NIH HHS/United States
- DK093399/DK/NIDDK NIH HHS/United States
- R01 DK081426/DK/NIDDK NIH HHS/United States
- GM095385/GM/NIGMS NIH HHS/United States
- R01 HG004872/HG/NHGRI NIH HHS/United States
- R56 GM063904/GM/NIGMS NIH HHS/United States
- DK091129/DK/NIDDK NIH HHS/United States
- HHMI/Howard Hughes Medical Institute/United States
- GM63904/GM/NIGMS NIH HHS/United States
- DK081426/DK/NIDDK NIH HHS/United States
- U01 HG004866/HG/NHGRI NIH HHS/United States
- R01 GM095385/GM/NIGMS NIH HHS/United States
- R01 DK093399/DK/NIDDK NIH HHS/United States
- HG4866/HG/NHGRI NIH HHS/United States
- R01 GM063904/GM/NIGMS NIH HHS/United States
- DK78669/DK/NIDDK NIH HHS/United States
- F31 DK091129/DK/NIDDK NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
