Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct;40(5):1152-7.
doi: 10.1042/BST20120159.

Cellular Reprogramming: A New Approach to Modelling Parkinson's Disease


Cellular Reprogramming: A New Approach to Modelling Parkinson's Disease

Elizabeth M Hartfield et al. Biochem Soc Trans. .


iPSCs (induced pluripotent stem cells) offer an unparalleled opportunity to generate and study physiologically relevant cell types in culture. iPSCs can be generated by reprogramming almost any somatic cell type using pluripotency factors such as Oct4, SOX2, Nanog and Klf4. By reprogramming cells from patients carrying disease-associated mutations, and subsequent differentiation into the cell type of interest, researchers now have the opportunity to study disease-specific cell types which were previously inaccessible. In the case of PD (Parkinson's disease), reprogramming is advancing rapidly, and cell lines have been generated from patients carrying mutations in several disease-associated genes, including SNCA (α-synuclein), PARK2 (parkin), PINK1 (phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1), PARK7 (DJ-1) and LRRK2 (leucine-rich repeat kinase 2), as well as idiopathic cases. Functional dopaminergic neurons have been differentiated from these cells and their physiology has been compared with control neurons. Human dopaminergic neurons had been previously inaccessible until post-mortem, when the disease is generally highly progressed into pathology. In comparison, iPSCs provide a living cell model with the potential to study early molecular changes which accumulate in cells and ultimately result in neurodegeneration. Although clear phenotypes have not yet been unambiguously identified in patient-derived dopaminergic neurons, there are suggested aberrations in cellular pathways involved in neurodegeneration. Overall, these cells offer a unique opportunity to study dopaminergic neurons carrying a 'Parkinsonian genome'. The present review discusses the advances in cellular reprogramming technologies and studies that have been carried out on PD-derived iPSCs and differentiated dopaminergic neurons.

Similar articles

See all similar articles

Cited by 8 articles

See all "Cited by" articles

Publication types

MeSH terms