Purpose: Glioblastoma (GBM), the most common primary brain tumor in adults, presents a high frequency of alteration in the PI3K pathway. Our objectives were to identify a dual PI3K/mTOR inhibitor optimized to cross the blood-brain barrier (BBB) and characterize its brain penetration, pathway modulation in the brain and efficacy in orthotopic xenograft models of GBM.
Experimental design: Physicochemical properties of PI3K inhibitors were optimized using in silico tools, leading to the identification of GNE-317. This compound was tested in cells overexpressing P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP). Following administration to mice, GNE-317 plasma and brain concentrations were determined, and phosphorylated biomarkers (pAkt, p4EBP1, and pS6) were measured to assess PI3K pathway suppression in the brain. GNE-317 efficacy was evaluated in the U87, GS2, and GBM10 orthotopic models of GBM.
Results: GNE-317 was identified as having physicochemical properties predictive of low efflux by P-gp and BCRP. Studies in transfected MDCK cells showed that GNE-317 was not a substrate of either transporter. GNE-317 markedly inhibited the PI3K pathway in mouse brain, causing 40% to 90% suppression of the pAkt and pS6 signals up to 6-hour postdose. GNE-317 was efficacious in the U87, GS2, and GBM10 orthotopic models, achieving tumor growth inhibition of 90% and 50%, and survival benefit, respectively.
Conclusions: These results indicated that specific optimization of PI3K inhibitors to cross the BBB led to potent suppression of the PI3K pathway in healthy brain. The efficacy of GNE-317 in 3 intracranial models of GBM suggested that this compound could be effective in the treatment of GBM.
©2012 AACR.