Medium-mass nuclei with normal-ordered chiral NN+3N interactions

Phys Rev Lett. 2012 Aug 3;109(5):052501. doi: 10.1103/PhysRevLett.109.052501. Epub 2012 Jul 31.

Abstract

We study the use of truncated normal-ordered three-nucleon interactions in nuclear structure calculations starting from chiral two- plus three-nucleon Hamiltonians evolved consistently with the similarity renormalization group. We present three key developments: (i) a rigorous benchmark of the normal-ordering approximation in the importance-truncated no-core shell model for (4)He, (16)O, and (40)Ca; (ii) a direct comparison of the importance-truncated no-core shell model results with coupled-cluster calculations at the singles and doubles level for (16)O; and (iii) first applications of similarity renormalization group-evolved chiral NN+3N Hamiltonians in coupled-cluster calculations for medium-mass nuclei (16,24)O and (40,48)Ca. We show that the normal-ordered two-body approximation works very well beyond the lightest isotopes and opens a path for studies of medium-mass and heavy nuclei with chiral two- plus three-nucleon interactions. At the same time we highlight the predictive power of chiral Hamiltonians.