Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jan 10;812(1):55-65.
doi: 10.1016/0005-2736(85)90521-8.

Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential

Affiliations

Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential

M J Hope et al. Biochim Biophys Acta. .

Abstract

A technique for the rapid production of large unilamellar vesicles by repeated extrusion under moderate pressures (≤ 500 lb/in²) of multilamellar vesicles through polycarbonate filters (100 nm pore size) is demonstrated. In combination with freeze-thaw protocols where required, this procedure results in unilamellar vesicles with diameters in the range 60-100 nm and with trapped volumes in the region of 1-3 μl/μmol phospholipid. Advantages of this technique include the absence of organic solvents or detergents, the high lipid concentrations (up to 300 μmol/ml) that can be employed and the high trapping efficiencies (up to 30%) that can be achieved. Further, the procedure for generating these 'LUVET's' (large unilamellar vesicles by extrusion techniques) is rapid (≤ min preparation time) and can be employed to generate large unilamellar vesicles from a wide variety of lipid species and mixtures. As a particular illustration of the utility of this vesicle preparation, LUVET systems exhibiting a membrane potential (ΔΨ) in response to a transmembrane Na⁺/K⁺ gradient (K⁺ inside) have been characterized. By employing the lipophilic cation methyltriphenylphosphonium (MTPP⁺) it is shown that a K⁺ of diffusion potential (ΔΨ < -100 mV) forms rapidly in the presence of the K⁺ ionophore valinomycin for soya phosphatidylcholine (soya PC) LUVET's. The values of Δψ obtained correlate well with the K⁺ concentration gradient across the membrane, and it is demonstrated that the decay of Δψ with time depends on the flux of Na+ into the vesicles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources