Dimethylacetamide (DMAC) and dimethylformamide (DMF) continue to be important, widely used solvents involved in a wide variety of industrial applications. As liquids with relatively low vapor pressures, contact with both the integumentary and respiratory systems is the main source of human exposure. Although airborne control levels for the workplace have been established and industrial hygiene practices to limit dermal contact have been put in place, use of these chemicals has been associated with occupational illness, mainly in Asia where new and expanded uses have led to overexposures. Thus an update of the basic toxicology data including tables indicating the dose/exposure response characteristics of both DMAC and DMF is currently important. Both chemicals are similar from a toxicology perspective. Human experience has generally shown the materials to be without adverse effect except under conditions where airborne and dermal controls were not properly applied. The use of urinary metabolite monitoring has successfully been employed to measure integrated dermal and inhalation worker exposure. The chemicals are not particularly toxic following acute exposure but high doses can produce damage to the liver, the organ which is first affected by these two chemicals. Repeated dose/exposure studies have characterized both the targets of toxicity and the doses required to produce changes by various routes of exposure. Higher doses of these materials can produce changes in developing systems, infrequently in experiments at doses in which the maternal animal is unaffected, thus care needs to be taken when exposures are to women of child-bearing age. The chemicals appear to be low in genetic activity and inhalation exposures have not shown the materials to produce tumors in rodents except with DMF in a situation in which aerosol formation was encountered. This presentation extends the two previous reviews and, like those, includes updated information on acetamide and formamide and their monomethyl derivatives as well as the commercially important DMAC and DMF. Since a large portion of the newer information deals with effects in humans and biomonitoring, these sections are presented at the start of this review.