Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films
- PMID: 23016148
- PMCID: PMC3388368
- DOI: 10.3762/bjnano.3.50
Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films
Abstract
Nanocrystalline lead selenide (PbSe) thin films were prepared on glass substrates by a chemical bath deposition method, using sodium selenosulfate (Na(2)SeSO(3)) as a source of Se(2-) ions, and lead acetate as a source of Pb(2+) ions. Trisodium citrate (TSC) was used as a complexing agent. PbSe films were prepared at various deposition temperatures while the pH value was kept fixed at 11, and the effect on the resulting film properties was studied by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and optical absorption studies. The structural parameters, such as the lattice constant (a), crystallite size (D), dislocation density (ρ) and microstrain (ε) were evaluated from the XRD spectra. It was found that average crystallite size, as calculated from Scherrer's formula, increased from 23 to 33 nm as the deposition temperature was varied from 303 to 343 K. The dislocation density and microstrain were found to vary inversely with the crystallite size, whereas the lattice constant was found to increase with an increase in crystallite size. The optical absorption spectra of the nanocrystalline PbSe films showed a blue shift, and the optical band gap (E(g)) was found to increase from 1.96 to 2.10 eV with the decrease in crystallite size.
Keywords: Nelson–Riley plot; chemical bath deposition; lattice parameter; lead selenide; optical absorption.
Figures
Similar articles
-
Effect of complexing agent and annealing atmosphere on properties of nanocrystalline ZnS thin films.J Nanosci Nanotechnol. 2010 May;10(5):3686-90. doi: 10.1166/jnn.2010.2330. J Nanosci Nanotechnol. 2010. PMID: 20359028
-
Studies on Structural, Morphological and Optical Properties of Chemically Deposited CdS(1-x)Se(x) Thin Films.J Fluoresc. 2016 Mar;26(2):459-69. doi: 10.1007/s10895-015-1732-9. Epub 2015 Dec 3. J Fluoresc. 2016. PMID: 26634707
-
Synthesis of nanocrystalline SnO(x) (x = 1-2) thin film using a chemical bath deposition method with improved deposition time, temperature and pH.Sensors (Basel). 2011;11(10):9207-16. doi: 10.3390/s111009207. Epub 2011 Sep 27. Sensors (Basel). 2011. PMID: 22163690 Free PMC article.
-
Effect of bath temperature on the properties of nanocrystalline ZnO thin films.J Nanosci Nanotechnol. 2010 May;10(5):3412-5. doi: 10.1166/jnn.2010.2306. J Nanosci Nanotechnol. 2010. PMID: 20358968
-
Effect of Chemical Bath Deposition Variables on the Properties of Zinc Sulfide Thin Films: A Review.Molecules. 2023 Mar 20;28(6):2780. doi: 10.3390/molecules28062780. Molecules. 2023. PMID: 36985752 Free PMC article. Review.
Cited by
-
Elucidating the Role of Copper-Induced Mixed Phases on the Electrochemical Performance of Mn-Based Thin-Film Electrodes.ACS Omega. 2023 Nov 30;8(49):46640-46652. doi: 10.1021/acsomega.3c05614. eCollection 2023 Dec 12. ACS Omega. 2023. PMID: 38107935 Free PMC article.
-
Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors.Materials (Basel). 2023 Aug 24;16(17):5790. doi: 10.3390/ma16175790. Materials (Basel). 2023. PMID: 37687485 Free PMC article. Review.
-
Advancement of Physical and Photoelectrochemical Properties of Nanostructured CdS Thin Films toward Optoelectronic Applications.Nanomaterials (Basel). 2023 May 30;13(11):1764. doi: 10.3390/nano13111764. Nanomaterials (Basel). 2023. PMID: 37299667 Free PMC article.
-
Improving the photoelectrochemical water splitting performance of CuO photocathodes using a protective CuBi2O4 layer.Sci Rep. 2023 Apr 8;13(1):5776. doi: 10.1038/s41598-023-32804-0. Sci Rep. 2023. PMID: 37031237 Free PMC article.
-
Fabrication of a zinc oxide/alginate (ZnO/Alg) bionanocomposite for enhanced dye degradation and its optimization study.RSC Adv. 2022 Mar 2;12(12):7210-7228. doi: 10.1039/d1ra08991a. eCollection 2022 Mar 1. RSC Adv. 2022. PMID: 35424670 Free PMC article.
References
-
- Gao S, Liu D, Xu D, Li D, Hong Y, Chen H, Dai Q, Kan S, Li H, Zou G. Smart Mater Struct. 2007;16:2350–2353. doi: 10.1088/0964-1726/16/6/039. - DOI
-
- Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U, Lifshitz E. Nano Lett. 2004;4:159–165. doi: 10.1021/nl0345116. - DOI
-
- Murray C B, Sun S, Gaschler W, Doyle H, Betley T A, Kagan C R. IBM J Res Dev. 2001;45:47–56. doi: 10.1147/rd.451.0047. - DOI
-
- Allan G, Delerue C. Phys Rev B. 2004;70:245321. doi: 10.1103/PhysRevB.70.245321. - DOI
-
- Shen W Z, Wang K, Jiang L F, Wang X G, Shen S C, Wu H Z, McCann P J. Appl Phys Lett. 2001;79:2579–2581. doi: 10.1063/1.1406988. - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous