Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma

J Insect Physiol. 2012 Nov;58(11):1511-6. doi: 10.1016/j.jinsphys.2012.09.006. Epub 2012 Sep 24.

Abstract

Environmental temperature is one of the most important abiotic factors affecting insect behaviour; virtually all physiological processes, including those which regulate nervous system function, are affected. At both low and high temperature extremes insects enter a coma during which individuals do not display behaviour and are unresponsive to stimulation. We investigated neurophysiological correlates of chill and hyperthermic coma in Drosophila melanogaster. Coma resulting from anoxia causes a profound loss of K(+) homeostasis characterized by a surge in extracellular K(+) concentration ([K(+)](o)) in the brain. We recorded [K(+)](o) in the brain during exposure to both low and high temperatures and observed a similar surge in [K(+)](o) which recovered to baseline concentrations following return to room temperature. We also found that rapid cold hardening (RCH) using a cold pretreatment (4°C for 2h; 2h recovery at room temperature) increased the peak brain [K(+)](o) reached during a subsequent chill coma and increased the rates of accumulation and clearance of [K(+)](o). We conclude that RCH preserves K(+) homeostasis in the fly brain during exposure to cold by reducing the temperature sensitivity of the rates of homeostatic processes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Animals
  • Brain / metabolism*
  • Cold Temperature*
  • Coma / metabolism
  • Drosophila melanogaster / metabolism*
  • Homeostasis
  • Hypoxia / metabolism
  • Male
  • Potassium / metabolism*

Substances

  • Potassium