Dietary exposure to perfluoroalkyl acids for the Swedish population in 1999, 2005 and 2010

Environ Int. 2012 Nov 15;49:120-7. doi: 10.1016/j.envint.2012.08.016. Epub 2012 Sep 24.


Dietary intake has been hypothesized to be the major pathway of human exposure to perfluoroalkyl acids (PFAAs). However, difficulties associated with the analysis of PFAAs at ultra trace levels in food samples have prevented the confirmation of this hypothesis. In this study, the dietary intake of PFAAs for the general Swedish population was estimated by applying a highly sensitive analytical method to a set of archived food market basket samples from 1999, 2005 and 2010. Dietary exposure to perfluorooctane sulfonic acid (PFOS) (860-1440 pg kg⁻¹ day⁻¹), perfluoroundecanoic acid (PFUnDA) (90-210 pg kg⁻¹ day⁻¹), perfluorodecanoic acid (PFDA) (50-110 pg kg⁻¹ day⁻¹) and perfluorononanoic acid (PFNA) (70-80 pg kg⁻¹ day⁻¹) was dominated by the consumption of fish and meat. In contrast, dietary exposure to PFOA (350-690 pg kg⁻¹ day⁻¹) originated from low levels (8-62 pg g⁻¹) found in several high consumption food categories including cereals, dairy products, vegetables and fruit. The dietary intakes of PFOS and PFOA estimated in this study were 4 to 10 times lower compared to previous exposure modeling studies. Nevertheless, the dietary intake of PFOS and PFOA was still a factor of 6 to 10 higher than exposure through ingestion of household dust and drinking water estimated for the general Swedish population. For perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA) and perfluorohexane sulfonic acid (PFHxS) drinking water intake was the major exposure pathway (36-53% of the total exposure) whereas dust ingestion made a significant contribution (27-49%) to the total exposure for PFHxA, PFHpA, PFNA, perfluorotridecanoic acid (PFTrDA) and perfluorotetradecanoic acid (PFTeDA). Dietary intakes varied by less than a factor of three for all PFAAs during the different sampling years which demonstrates that dietary intake has been fairly constant over the past decade when many manufacturing changes occurred.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diet / statistics & numerical data*
  • Environmental Exposure / statistics & numerical data*
  • Environmental Pollutants / analysis*
  • Environmental Pollution / statistics & numerical data
  • Fluorocarbons / analysis*
  • Food Analysis*
  • Food Contamination / statistics & numerical data*
  • Humans
  • Sweden


  • Environmental Pollutants
  • Fluorocarbons