Neuromuscular responses to different resistance loading protocols using pneumatic and weight stack devices

J Electromyogr Kinesiol. 2013 Feb;23(1):118-24. doi: 10.1016/j.jelekin.2012.08.017. Epub 2012 Sep 26.

Abstract

The purpose of this study was to examine single repetition characteristics and acute neuromuscular responses to typical hypertrophic (HL), maximal strength (MSL), and power (PL) loadings performed with two of the most common resistance modes; pneumatic and weight stack. Acute responses were assessed by measuring maximal voluntary contraction (MVC), corresponding quadriceps-EMG and resting and superimposed twitch torques. Activation level was calculated from the twitch torques. Decreases in MVC were greater during HL and MSL than during PL. During HL, resting twitch force decreased 8% (P < 0.05) more on the weight stack than on the pneumatic device. Furthermore, loading using the weight stack caused reduced resting twitch force, activation level, and EMG-amplitude after MSL and PL (P < 0.05-0.01). PL on the pneumatic device decreased MVC and rapid force production, while the respective PL on the weight stack device was specific to decreased rapid force production only. However, mean angular velocities and power of the repetitions were higher on the pneumatic device when using light loads. The present study showed that, at least in untrained subjects, the weight stack device induced greater levels of peripheral fatigue during HL. It also led to large central fatigue during MSL and PL. On the other hand, on the pneumatic device contraction velocity with low loads was higher compared to the weight stack device. Therefore, it is recommended that the resistance mode should be chosen according to the specific training goal.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Humans
  • Male
  • Muscle Contraction / physiology*
  • Muscle Fatigue / physiology*
  • Muscle, Skeletal / physiology*
  • Physical Endurance / physiology*
  • Physical Exertion / physiology*
  • Physical Fitness / physiology*
  • Resistance Training / methods*
  • Torque
  • Young Adult