We formalize an algorithm for solving the L(1)-norm best-fit hyperplane problem derived using first principles and geometric insights about L(1) projection and L(1) regression. The procedure follows from a new proof of global optimality and relies on the solution of a small number of linear programs. The procedure is implemented for validation and testing. This analysis of the L(1)-norm best-fit hyperplane problem makes the procedure accessible to applications in areas such as location theory, computer vision, and multivariate statistics.