Traveling and pinned fronts in bistable reaction-diffusion systems on networks

PLoS One. 2012;7(9):e45029. doi: 10.1371/journal.pone.0045029. Epub 2012 Sep 28.

Abstract

Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks. Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized systems. They represent waves of transition from one stable state into another, spreading over the entire network. The fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences. An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field theory for stationary patterns is constructed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Diffusion
  • Models, Biological*
  • Nonlinear Dynamics
  • Numerical Analysis, Computer-Assisted

Grants and funding

Financial support from the German Research Foundation Collaborative Research Center SFB910 “Control of Self-Organizing Nonlinear Systems” (http://www.itp.tu-berlin.de/sfb910) and from the Volkswagen Foundation in Germany (http://www.volkswagenstiftung.de) is gratefully acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.