New perspectives on neuronal development via microfluidic environments

Trends Neurosci. 2012 Dec;35(12):752-61. doi: 10.1016/j.tins.2012.09.001. Epub 2012 Sep 29.


Understanding the signals that guide neuronal development and direct formation of axons, dendrites, and synapses during wiring of the brain is a fundamental challenge in developmental neuroscience. Discovery of how local signals shape developing neurons has been impeded by the inability of conventional culture methods to interrogate microenvironments of complex neuronal cytoarchitectures, where different subdomains encounter distinct chemical, physical, and fluidic features. Microfabrication techniques are facilitating the creation of microenvironments tailored to neuronal structures and subdomains with unprecedented access and control. The design, fabrication, and properties of microfluidic devices offer significant advantages for addressing unresolved issues of neuronal development. These high-resolution approaches are poised to contribute new insights into mechanisms for restoring neuronal function and connectivity compromised by injury, stress, and neurodegeneration.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Humans
  • Microfluidic Analytical Techniques
  • Microfluidics / methods*
  • Neurogenesis / physiology*
  • Neurons / cytology*
  • Neurons / physiology*
  • Neurosciences / trends*