Twisted nematic liquid crystal polarization grating with the handedness conservation of a circularly polarized state

Opt Express. 2012 Jul 30;20(16):18449-58. doi: 10.1364/OE.20.018449.

Abstract

We propose a liquid crystal (LC) polarization grating that conserves the polarization state of incident light, wherein the variation range of the twist angle is 2π. The design scheme for theoretically 100% diffraction efficiency of the first-diffraction order is derived, and a prototype LC grating is evaluated. Under zero voltage, the fabricated LC grating exhibits high efficiency of the first-order diffraction, validating the proposed design scheme. The high efficiency of the second-order diffraction can also be achieved under a high voltage so that the LC director in the midplane is vertical to the substrate plane. The circular polarization sense of the second-order diffraction is identical to that of the incident light as in the case of the first-order diffraction. This grating functions as a beam deflector, steering the input beam in three different directions (zeroth-, first-, and second-order diffractions) by adjusting the applied voltage.