Staphylococcus epidermidis infections are common complications of prosthetic device implantation. SdrF, a surface protein, appears to play a critical role in the initial colonization step by adhering to type I collagen and Dacron™. The role of ionic interactions in S. epidermidis adherence to prosthetic material was examined. SdrF was cloned and expressed in Lactococcus lactis. The effect of pH, cation concentration, and detergents on adherence to different types of plastic surfaces was assessed by crystal violet staining and bacterial cell counting. SdrF, in contrast with controls and other S. epidermidis surface proteins, bound to hydrophobic materials such as polystyrene. Binding was an ionic interaction and was affected by surface charge of the plastic, pH, and cation concentration. Adherence of the SdrF construct was increased to positively charged plastics and was reduced by increasing concentrations of Ca(2+) and Na(+). Binding was optimal at pH 7.4. Kinetic studies demonstrated that the SdrF B domain as well as one of the B subdomains was sufficient to mediate binding. The SdrF construct also bound more avidly to Goretex™ than the lacotococcal control. SdrF is a multifunctional protein that contributes to prosthetic devices infections by ionic, as well as specific receptor-ligand interactions.
© 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.