Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 1;113(11):1784-91.
doi: 10.1152/japplphysiol.00767.2012. Epub 2012 Oct 4.

Type 2 diabetes impairs tendon repair after injury in a rat model

Affiliations
Free article

Type 2 diabetes impairs tendon repair after injury in a rat model

Aisha S Ahmed et al. J Appl Physiol (1985). .
Free article

Abstract

Type 2 diabetes adversely affects the properties of native connective tissue. The underlying mechanisms, however, by which diabetes alters connective tissue metabolism, especially tendon, are poorly defined. The aim of this study was to determine the effect of type 2 diabetes on the mechanical, histological, and molecular properties of the intact and healing Achilles tendon. The right Achilles tendon was transected in 11 male diabetic Goto-Kakizaki (GK) and 10 age- and sex-matched Wistar control rats, while the left Achilles tendon was left intact. At 2 wk postinjury the intact and injured tendons were assessed by biomechanical testing and histology. The gene expression of collagen I and III, biglycan, versican, MMP-13, and MMP-3 was measured by quantitative RT-PCR, and their protein distribution was studied by immunohistochemistry. Intact tendons exhibited only small differences between the groups. In injured tendons, however, a significantly smaller transverse area and lower stiffness was found in diabetic GK compared with Wistar control rats. This correlated with impaired structural organization of collagen fibers and a reduced expression of collagen I and III in the injured tendons of the diabetic GK compared with Wistar control. Moreover, MMP-3 gene expression was downregulated in the injured diabetic GK tendons compared with injured Wistar controls. Our results indicate that in a rat model of diabetes tendon healing is impaired mainly due to altered expression of collagen and MMPs reflecting decreased degradation of matrix proteins and impaired tissue remodeling. Further our data suggest that therapeutic modulation of collagens or MMPs might be targets for new regenerative approaches in operated, injured, or maybe also degenerative tendon diseases in diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources