Background: Alpha motoneurons receive common synaptic inputs from spinal and supraspinal pathways. As a result, a certain degree of correlation can be observed between motoneuron spike trains during voluntary contractions. This has been studied by using correlation measures in the time and frequency domains. These measures are interpreted as reflecting different types of connectivity in the spinal networks, although the relation between the degree of correlation of the output motoneuron spike trains and of their synaptic inputs is unclear.
Methodology/principal findings: In this study, we analyze theoretically this relation and we complete this analysis by simulations and experimental data on the abductor digiti minimi muscle. The results demonstrate that correlation measures between motoneuron output spike trains are inherently influenced by the discharge rate and that this influence cannot be compensated by normalization. Because of the influence of discharge rate, frequency domain measures of correlation (coherence) do not identify the full frequency content of the common input signal when computed from pairs of motoneurons. Rather, an increase in sampling rate is needed by using cumulative spike trains of several motoneurons. Moreover, the application of averaging filters to the spike trains influences the magnitude of the estimated correlation levels calculated in the time, but not in the frequency domain (coherence).
Conclusions: It is concluded that the analysis of coherence in different frequency bands between cumulative spike trains of a sufficient number of motoneurons provides information on the spectrum of the common synaptic input. Nonetheless, the absolute values of coherent peaks cannot be compared across conditions with different cumulative discharge rates.