The human bacterial pathogen Neisseria meningitidis remains a serious worldwide health threat, but progress is being made toward the control of meningococcal infections. This review summarizes current knowledge of the global epidemiology and the pathophysiology of meningococcal disease, as well as recent advances in prevention by new vaccines. Meningococcal disease patterns and incidence can vary dramatically, both geographically and over time in populations, influenced by differences in invasive meningococcal capsular serogroups and specific genotypes designated as ST clonal complexes. Serogroup A (ST-5, ST-7), B (ST-41/44, ST-32, ST-18, ST-269, ST-8, ST-35), C (ST-11), Y (ST-23, ST-167), W-135 (ST-11) and X (ST-181) meningococci currently cause almost all invasive disease. Serogroups B, C, and Y are responsible for the majority of cases in Europe, the Americas, and Oceania; serogroup A has been associated with the highest incidence (up to 1000 per 100,000 cases) and large outbreaks of meningococcal disease in sub-Saharan Africa and previously Asia; and serogroups W-135 and X have emerged to cause major disease outbreaks in sub-Saharan Africa. Significant declines in meningococcal disease have occurred in the last decade in many developed countries. In part, the decline is related to the introduction of new meningococcal vaccines. Serogroup C polysaccharide-protein conjugate vaccines were introduced over a decade ago, first in the UK in a mass vaccination campaign, and are now widely used; multivalent meningococcal conjugate vaccines containing serogroups A, C, W-135, and/or Y were first used for adolescents in the US in 2005 and have now expanded indications for infants and young children, and a new serogroup A conjugate vaccine has recently been introduced in sub-Saharan Africa. The effectiveness of these conjugate vaccines has been enhanced by the prevention of person-to-person transmission and herd immunity. In addition, progress has been made in serogroup B-specific vaccines based on conserved proteins and outer membrane vesicles. However, continued global surveillance is essential in understanding and predicting the dynamic changes in the epidemiology and biological basis of meningococcal disease and to influence the recommendations for current and future vaccines or other prevention strategies.
Keywords: Neisseria meningitidis; conjugate vaccines; meningococcal disease; meningococcal vaccines.