Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects

Pharmacogenomics J. 2013 Feb;13(1):1-11. doi: 10.1038/tpj.2012.45. Epub 2012 Oct 23.


Interindividual differences in drug disposition are important causes for adverse drug reactions and lack of drug response. The majority of phase I and phase II drug-metabolizing enzymes (DMEs) are polymorphic and constitute essential factors for the outcome of drug therapy. Recently, both genome-wide association (GWA) studies with a focus on drug response, as well as more targeted studies of genes encoding DMEs have revealed in-depth information and provided additional information for variation in drug metabolism and drug response, resulting in increased knowledge that aids drug development and clinical practice. In addition, an increasing number of meta-analyses have been published based on several original and often conflicting pharmacogenetic studies. Here, we review data regarding the pharmacogenomics of DMEs, with particular emphasis on novelties. We conclude that recent studies have emphasized the importance of CYP2C19 polymorphism for the effects of clopidogrel, whereas the CYP2C9 polymorphism appears to have a role in anticoagulant treatment, although inferior to VKORC1. Furthermore, the analgesic and side effects of codeine in relation to CYP2D6 polymorphism are supported and the influence of CYP2D6 genotype on breast cancer recurrence during tamoxifen treatment appears relevant as based on three large studies. The influence of CYP2D6 polymorphism on the effect of antidepressants in a clinical setting is yet without any firm evidence, and the relation between CYP2D6 ultrarapid metabolizers and suicide behavior warrants further studies. There is evidence for the influence of CYP3A5 polymorphism on tacrolimus dose, although the influence on response is less studied. Recent large GWA studies support a link between CYP1A2 polymorphism and blood pressure as well as coffee consumption, and between CYP2A6 polymorphism and cigarette consumption, which in turn appears to influence the lung cancer incidence. Regarding phase II enzyme polymorphism, the anticancer treatment with mercaptopurines and irinotecan is still considered important in relation to the polymorphism of TPMT and UGT1A1, respectively. There is a need for further clarification of the clinical importance and use of all these findings, but the recent research in the field that encompasses larger studies and a whole genome perspective, improves the possibilities be able to make firm and cost-effective recommendations for drug treatment in the future.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Humans
  • Inactivation, Metabolic
  • Pharmacogenetics / methods*
  • Pharmacokinetics
  • Polymorphism, Genetic


  • Cytochrome P-450 Enzyme System