Wide dissemination of GES-type carbapenemases in Acinetobacter baumannii isolates in Kuwait

Antimicrob Agents Chemother. 2013 Jan;57(1):183-8. doi: 10.1128/AAC.01384-12. Epub 2012 Oct 22.

Abstract

Acinetobacter baumannii is an opportunistic pathogen that is an important source of nosocomial infections. Production of extended-spectrum β-lactamases (ESBLs) of the GES type in A. baumannii has been increasingly reported, and some of these GES-type enzymes possess some carbapenemase activity. Our aim was to analyze the resistance determinants and the clonal relationships of carbapenem-nonsusceptible A. baumannii clinical isolates recovered from hospitals in Kuwait. A total of 63 isolates were analyzed, and all were found to be positive for bla(GES)-type genes. One isolate harbored the bla(GES-14) gene encoding an ESBL with significant carbapenemase activity, whereas the other isolates harbored the bla(GES-11) ESBL gene. Thirty-three isolates coharbored the bla(OXA-23) and bla(GES-11) genes. Analyses of the genetic locations indicated that the bla(GES-11/-14) genes were plasmid located. It is noteworthy that the bla(OXA-23) and bla(GES-11) genes were colocated onto a single plasmid. Nine different pulsotypes were observed among the 63 isolates. This study showed the emergence of GES-type ESBLs in A. baumannii in Kuwait, further suggesting that the Middle East region might be a reservoir for carbapenemase-producing A. baumannii.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter Infections / drug therapy*
  • Acinetobacter Infections / epidemiology
  • Acinetobacter Infections / microbiology
  • Acinetobacter baumannii / drug effects*
  • Acinetobacter baumannii / genetics
  • Acinetobacter baumannii / isolation & purification
  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / classification
  • Bacterial Proteins / genetics*
  • Bacterial Typing Techniques
  • Carbapenems / pharmacology*
  • Electrophoresis, Gel, Pulsed-Field
  • Humans
  • Kuwait / epidemiology
  • Plasmids*
  • beta-Lactam Resistance / drug effects
  • beta-Lactam Resistance / genetics
  • beta-Lactamases / classification
  • beta-Lactamases / genetics*

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Carbapenems
  • beta-Lactamases
  • carbapenemase