Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(10):e48135.
doi: 10.1371/journal.pone.0048135. Epub 2012 Oct 23.

Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome

Affiliations

Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome

Kathryn T Hall et al. PLoS One. 2012.

Abstract

Identifying patients who are potential placebo responders has major implications for clinical practice and trial design. Catechol-O-methyltransferase (COMT), an important enzyme in dopamine catabolism plays a key role in processes associated with the placebo effect such as reward, pain, memory and learning. We hypothesized that the COMT functional val158met polymorphism, was a predictor of placebo effects and tested our hypothesis in a subset of 104 patients from a previously reported randomized controlled trial in irritable bowel syndrome (IBS). The three treatment arms from this study were: no-treatment ("waitlist"), placebo treatment alone ("limited") and, placebo treatment "augmented" with a supportive patient-health care provider interaction. The primary outcome measure was change from baseline in IBS-Symptom Severity Scale (IBS-SSS) after three weeks of treatment. In a regression model, the number of methionine alleles in COMT val158met was linearly related to placebo response as measured by changes in IBS-SSS (p = .035). The strongest placebo response occurred in met/met homozygotes treated in the augmented placebo arm. A smaller met/met associated effect was observed with limited placebo treatment and there was no effect in the waitlist control. These data support our hypothesis that the COMT val158met polymorphism is a potential biomarker of placebo response.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Effect of COMT genotype on change in IBS-SSS.
Number of val158met met alleles showed a significant linear effect on IBS-SSS (beta = 0.17; p = .032). IBS-SSS includes abdominal pain severity, abdominal pain frequency, abdominal distention severity, dissatisfaction with bowel habits, and disruption of quality of life. Change in IBS-SSS  =  (IBS-SSS at baseline – IBS-SSS at 3-weeks). Regression model included COMT genotype (number of met alleles) and baseline IBS-SSS. Error bars indicate the standard error of the mean. N = 104.
Figure 2
Figure 2. Interaction effect of COMT genotype and treatment arm on change in IBS-SSS.
The interaction between COMT genotype (number of met alleles) and treatment arm was statistically significant (beta = 0.17; p = .035). Regression model included the following parameters: COMT genotype (number of met alleles), treatment arm, baseline IBS-SSS and their interaction (COMT genotype x treatment arm). Error bars indicate the standard error of the mean. N = 104.
Figure 3
Figure 3. Interaction effect of COMT genotype and treatment arm on Adequate Relief.
The interaction (COMT genotype x treatment arm) was statistically significant (beta = 0.25; p = .009), but not COMT genotype (beta = 0.01; p = .954). Adequate Relief was assessed by a single dichotomous categorization at three weeks, which asked patients: “Over the past week have you had adequate relief of your IBS symptoms?” Regression model parameters included: COMT genotype (number of met alleles), treatment arm and their interaction (COMT genotype x treatment arm). Error bars are standard error of the mean. N = 102.

Similar articles

Cited by

References

    1. Finniss DG, Kaptchuk TJ, Miller F, Benedetti F (2010) Biological, clinical, and ethical advances of placebo effects. Lancet 375: 686–695. - PMC - PubMed
    1. Zubieta JK, Stohler CS (2009) Neurobiological mechanisms of placebo responses. Annals of the New York Academy of Sciences 1156: 198–210. - PMC - PubMed
    1. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, et al. (2007) Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55: 325–336. - PubMed
    1. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, et al. (2008) Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Archives of general psychiatry 65: 220–231. - PubMed
    1. Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, et al. (2005) Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. The Journal of neuroscience: the official journal of the Society for Neuroscience 25: 7754–7762. - PMC - PubMed

Publication types