Survival and inactivation of human norovirus surrogates in blueberry juice by high-pressure homogenization

Foodborne Pathog Dis. 2012 Nov;9(11):974-9. doi: 10.1089/fpd.2012.1171. Epub 2012 Oct 31.


Human noroviruses (HNoV) have been implicated in gastrointestinal outbreaks associated with fresh produce, juices, and ready-to-eat foods. In order to determine the risk of HNoV transmission by contaminated blueberry juice, survival characteristics of cultivable HNoV surrogates (murine norovirus, MNV-1; feline calicivirus, FCV-F9; and bacteriophage MS2) in blueberry juice (pH = 2.77) after 0, 1, 2, 7, 14, and 21 days at refrigeration temperatures (4°C) were studied. High-pressure homogenization (HPH) was studied as a novel processing method for noroviral surrogate inactivation in blueberry juice. Blueberry juice or phosphate-buffered saline (PBS; pH 7.2 as control) was inoculated with each virus, stored over 21 days at 4°C or subjected to HPH, and plaque assayed. FCV-F9 (∼5 log(10) PFU/mL) was undetectable after 1 day in blueberry juice at 4°C. MNV-1 (∼4 log(10) PFU/ml) showed minimal reduction (1 log(10) PFU/mL) after 14 days, with greater reduction (1.95 log(10) PFU/mL; p < 0.05) after 21 days in blueberry juice at 4°C. Bacteriophage MS2 (∼6 log(10) PFU/mL) showed significant reduction (1.93 log(10) PFU/mL; p < 0.05) after 2 days and was undetectable after 7 days in blueberry juice at 4°C. FCV-F9 remained viable in PBS for up to 21 days (2.28 log(10) PFU/mL reduction), while MNV-1 and MS2 survived after 21 days (1.08 and 0.56 log(10) PFU/mL reduction, respectively). Intriguingly, FCV-F9 and bacteriophage MS2 showed reduction after minimal homogenization pressures in blueberry juice (pH = 2.77), possibly due to the combination of juice pH, juice components, and mechanical effects. MNV-1 in blueberry juice was only slightly reduced at 250 (0.33 log(10) PFU/mL) and 300 MPa (0.71 log(10) PFU/mL). Virus surrogate survival in blueberry juice at 4°C correlates well with the ease of HNoV transmission via juices. HPH for viral inactivation in juices is dependent on virus type, and higher homogenization pressures may be needed for MNV-1 inactivation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Beverages / virology*
  • Blueberry Plants / virology*
  • Calicivirus, Feline / growth & development
  • Cats
  • Cell Line
  • Cold Temperature
  • Consumer Product Safety
  • Food Contamination / prevention & control*
  • Food Handling / methods*
  • Food Microbiology
  • Food Preservation / methods*
  • Humans
  • Levivirus / growth & development
  • Mice
  • Norovirus / growth & development*
  • Pressure
  • Viral Plaque Assay
  • Virus Inactivation