Skirting the pitfalls: a clear-cut nomenclature for H3K4 methyltransferases

Clin Genet. 2013 Mar;83(3):212-4. doi: 10.1111/cge.12050. Epub 2012 Nov 27.


To unravel the system of epigenetic control of transcriptional regulation is a fascinating and important scientific pursuit. Surprisingly, recent successes in gene identification using high-throughput sequencing strategies showed that, despite their ubiquitous role in transcriptional control, dysfunction of chromatin-modifying enzymes can cause very specific human developmental phenotypes. An intriguing example is the identification of de novo dominant mutations in MLL2 as a cause of Kabuki syndrome, a well-known congenital syndrome that is associated with a very recognizable facial gestalt. However, the existing confusion in the nomenclature of the human and mouse MLL gene family impedes correct interpretation of scientific findings for these genes and their encoded proteins. This Review aims to point out this nomenclature pitfall, to explain its historical background, and to promote an unequivocal nomenclature system for chromatin-modifying enzymes as proposed by Allis et al. (2007).

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Abnormalities, Multiple / genetics
  • Abnormalities, Multiple / pathology
  • Animals
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Face / abnormalities
  • Hematologic Diseases / pathology
  • Histone-Lysine N-Methyltransferase / genetics
  • Histone-Lysine N-Methyltransferase / metabolism*
  • Histones / metabolism*
  • Humans
  • Mutation
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Syndrome
  • Terminology as Topic*
  • Vestibular Diseases / pathology


  • DNA-Binding Proteins
  • Histones
  • KMT2D protein, human
  • Neoplasm Proteins
  • Histone-Lysine N-Methyltransferase