Potential contribution of aromatase inhibition to the effects of nicotine and related compounds on the brain

Front Pharmacol. 2012 Nov 6:3:185. doi: 10.3389/fphar.2012.00185. eCollection 2012.

Abstract

Cigarette smoking continues to be a major public health problem, and while smoking rates in men have shown some decrease over the last few decades, smoking rates among girls and young women are increasing. Practically all of the important aspects of cigarette smoking and many effects of nicotine are sexually dimorphic (reviewed by Pogun and Yararbas, 2009). Women become addicted more easily than men, while finding it harder to quit. Nicotine replacement appears to be less effective in women. This may be linked to the observation that women are more sensitive than men to non-nicotine cues or ingredients in cigarettes. The reasons for these sex differences are mostly unknown. Several lines of evidence suggest that many of the reported sex differences related to cigarette smoking may stem from the inhibitory effects of nicotine and other tobacco alkaloids on estrogen synthesis via the enzyme aromatase (cyp19a gene product). Aromatase is the last enzyme in estrogen biosynthesis, catalyzing the conversion of androgens to estrogens. This review provides a summary of experimental evidence supporting brain aromatase as a potential mediator and/or modulator of nicotine actions in the brain, contributing to sex differences in smoking behavior. Additional research on the interaction between tobacco smoke, nicotine, and aromatase may help devise new, sex specific methods for prevention and treatment of smoking addiction.

Keywords: CYP19; PET imaging; amygdala; extragonadal estrogen; sex; smoking; vorozole.