Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family

Nature. 1990 Mar 22;344(6264):339-41. doi: 10.1038/344339a0.


The survival and functional maintenance of vertebrate neurons critically depends on the availability of specific neurotrophic factors. So far, only two such factors, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) have been characterized and shown to have the typical features of secretory proteins. This characterization has been possible because of the extraordinarily large quantities of NGF in some adult tissues, and the virtually unlimited availability of brain tissue from which BDNF was isolated. Both NGF and BDNF promote the survival of distinct neuronal populations in vivo and are related in their primary structure, suggesting that they are members of a gene family. Although there is little doubt about the existence of other such proteins, their low abundance has rendered their identification and characterization difficult. Taking advantage of sequence identities between NGF and BDNF, we have now identified a third member of this family, which we name neurotrophin-3. Both the tissue distribution of the messenger RNA and the neuronal specificity of this secretory protein differ from those of NGF and BDNF. Alignment of the sequences of the three proteins reveals a remarkable number of amino acid identities, including all cysteine residues. This alignment also delineates four variable domains, each of 7-11 amino acids, indicating structural elements presumably involved in the neuronal specificity of these proteins.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Cloning, Molecular
  • Mice
  • Molecular Sequence Data
  • Nerve Growth Factors / genetics*
  • Neurons / physiology*
  • Neurotrophin 3
  • Polymerase Chain Reaction
  • Tissue Distribution


  • Nerve Growth Factors
  • Neurotrophin 3