The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities

PLoS One. 2012;7(11):e47981. doi: 10.1371/journal.pone.0047981. Epub 2012 Nov 7.

Abstract

Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A) over three time intervals (2020, 2050, 2080). The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1) identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020-2050), representing assessment priorities for ex situ conservation; (2) identifies 'core localities' that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3) provides the location and characterization of target locations (populations) for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing plantations will be neagtively impacted by climate change.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Area Under Curve
  • Climate Change*
  • Coffea*
  • Coffee*
  • Ecosystem
  • Ethiopia
  • Kenya
  • Models, Biological
  • Sudan

Substances

  • Coffee

Grant support

Part of this study was funded by the Bentham-Moxon Trust (Royal Botanic Gardens, Kew) (http://www.kew.org/about-kew/policies-information/bentham-moxon/grants/index.htm). Fieldwork in South Sudan was funded by the USAID JGMUST Project and World Coffee Research (WCR) (http://worldcoffeeresearch.org/). Publication costs were supported by World Coffee Research (WCR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.