Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb;83(2):367-76.
doi: 10.1124/mol.112.082578. Epub 2012 Nov 13.

Obtusilactone B from Machilus Thunbergii targets barrier-to-autointegration factor to treat cancer

Affiliations

Obtusilactone B from Machilus Thunbergii targets barrier-to-autointegration factor to treat cancer

Wanil Kim et al. Mol Pharmacol. 2013 Feb.

Abstract

Targeting specific molecules is a promising cancer treatment because certain types of cancer cells are dependent on specific oncogenes. This strategy led to the development of therapeutics that use monoclonal antibodies or small-molecule inhibitors. However, the continued development of novel molecular targeting inhibitors is required to target the various oncogenes associated with the diverse types and stages of cancer. Obtusilactone B is a butanolide derivative purified from Machilus thunbergii. In this study, we show that obtusilactone B functions as a small-molecule inhibitor that causes abnormal nuclear envelope dynamics and inhibits growth by suppressing vaccinia-related kinase 1 (VRK1)-mediated phosphorylation of barrier-to-autointegration factor (BAF). BAF is important in maintaining lamin integrity, which is closely associated with diseases that include cancer. Specific binding of obtusilactone B to BAF suppressed VRK1-mediated BAF phosphorylation and the subsequent dissociation of the nuclear envelope from DNA that allows cells to progress through the cell cycle. Obtusilactone B potently induced tumor cell death in vitro, indicating that specific targeting of BAF to block cell cycle progression can be an effective anticancer strategy. Our results demonstrate that targeting a major constituent of the nuclear envelope may be a novel and promising alternative approach to cancer treatment.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources