Drugs of abuse modulated learning and memory in humans yet the underlying mechanism remained unclear. The extracellular signal-regulated kinase (ERK) and the transcription factor cAMP response element-binding protein (CREB) were involved in neuroplastic changes associated with learning and memory. In the current study, we used a Morris water maze to examine the effect of methamphetamine (METH) on different processes of spatial memory in mice. We then investigated the status of ERK and CREB in the hippocampus and prefrontal cortex (PFC). We found that 1.0 mg/kg dose of METH facilitated spatial memory consolidation when it was injected immediately after the last learning trial. In contrast, the same dose of METH had no effect on spatial memory retrieval when it was injected 30 min before the test. Furthermore, 1.0 mg/kg dose of METH injected immediately after retrieval had no effect on spatial memory reconsolidation. Activation of both ERK and CREB in the hippocampus was found following memory consolidation but not after retrieval or reconsolidation in METH-treated mouse groups. In contrast, activation of both ERK and CREB in the PFC was found following memory retrieval but not other processes in METH-treated mouse groups. These results suggested that METH facilitated spatial memory consolidation but not retrieval or reconsolidation. Moreover, activation of the ERK and CREB signaling pathway in the hippocampus might be involved in METH-induced spatial memory changes.
Copyright © 2012 Elsevier Ltd. All rights reserved.