Carcinoma origin dictates differential skewing of monocyte function

Oncoimmunology. 2012 Sep 1;1(6):798-809. doi: 10.4161/onci.20427.

Abstract

Macrophages are versatile cells, which phenotype is profoundly influenced by their environment. Pro-inflammatory classically activated or M1 macrophages, and anti-inflammatory alternatively-activated or M2 macrophages represent two extremes of a continuum of functional states. Consequently, macrophages that are present in tumors can exert tumor-promoting and tumor-suppressing activity, depending on the tumor milieu. In this study we investigated how human monocytes-the precursors of macrophages-are influenced by carcinoma cells of different origin. We demonstrate that monocytes, stimulated with breast cancer supernatant, showed increased expression of interleukin (IL)-10, IL-8 and chemokines CCL17 and CCL22, which are associated with an alternatively-activated phenotype. By contrast, monocytes that were cultured in supernatants of colon cancer cells produced more pro-inflammatory cytokines (e.g., IL-12 and TNFα) and reactive oxygen species. Secretome analysis revealed differential secretion of proteins by colon and breast cancer cell lines, of which the proteoglycan versican was exclusively secreted by colon carcinoma cell lines. Reducing active versican by blocking with monoclonal antibodies or shRNA diminished pro-inflammatory cytokine production by monocytes. Thus, colon carcinoma cells polarize monocytes toward a more classically-activated anti-tumorigenic phenotype, whereas breast carcinomas predispose monocytes toward an alternatively activated phenotype. Interestingly, presence of macrophages in breast or colon carcinomas correlates with poor or good prognosis in patients, respectively. The observed discrepancy in macrophage activation by either colon or breast carcinoma cells may therefore explain the dichotomy between patient prognosis and macrophage presence in these different tumors. Designing new therapies, directing development of monocytes toward M1 activated tumor macrophages in cancer patients, may have great clinical benefits.