Mode of cell death induction by pharmacological vacuolar H+-ATPase (V-ATPase) inhibition

J Biol Chem. 2013 Jan 11;288(2):1385-96. doi: 10.1074/jbc.M112.412007. Epub 2012 Nov 20.


The vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, has come into focus as an attractive target in cancer invasion. However, little is known about the role of V-ATPase in cell death, and especially the underlying mechanisms remain mostly unknown. We used the myxobacterial macrolide archazolid B, a potent inhibitor of the V-ATPase, as an experimental drug as well as a chemical tool to decipher V-ATPase-related cell death signaling. We found that archazolid induced apoptosis in highly invasive tumor cells at nanomolar concentrations which was executed by the mitochondrial pathway. Prior to apoptosis induction archazolid led to the activation of a cellular stress response including activation of the hypoxia-inducible factor-1α (HIF1α) and autophagy. Autophagy, which was demonstrated by degradation of p62 or fusion of autophagosomes with lysosomes, was induced at low concentrations of archazolid that not yet increase pH in lysosomes. HIF1α was induced due to energy stress shown by a decline of the ATP level and followed by a shutdown of energy-consuming processes. As silencing HIF1α increases apoptosis, the cellular stress response was suggested to be a survival mechanism. We conclude that archazolid leads to energy stress which activates adaptive mechanisms like autophagy mediated by HIF1α and finally leads to apoptosis. We propose V-ATPase as a promising drugable target in cancer therapy caught up at the interplay of apoptosis, autophagy, and cellular/metabolic stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy
  • Cell Death / drug effects*
  • Cell Line, Tumor
  • Cell Proliferation
  • Cytochromes c / metabolism
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Membrane Potential, Mitochondrial
  • Microscopy, Confocal
  • Signal Transduction
  • Vacuolar Proton-Translocating ATPases / antagonists & inhibitors*


  • Enzyme Inhibitors
  • Cytochromes c
  • Vacuolar Proton-Translocating ATPases