Evaluation of (241)Am deposited in different parts of the leg bones and skeleton to justify in vivo measurements of the knee for estimating total skeletal activity

Health Phys. 2013 Jan;104(1):57-62. doi: 10.1097/HP.0b013e31826e17be.

Abstract

The percentage of Am deposited in different parts of leg bones relative to the total leg activity was calculated from radiochemical analysis results from six whole body donors participating in the U.S. Transuranium and Uranium Registries (USTUR). In five of these six USTUR cases, the percentage of Am deposited in the knee region as well as in the entire leg was separately calculated relative to total skeletal activity. The purpose of this study is to find a region in the leg that is both suitable for in vivo measurement of Am deposited in the bones and has a good correlation with the total skeletal Am burden. In all analyzed cases, the femur was the bone with the highest percentage of Am deposited in the leg (48.8%). In the five cases that have complete whole skeletal analysis, the percentage of Am activity in the knee relative to entire skeletal activity was 4.8%, and the average value of its coefficient of variation was 10.6%. The percentage of Am in the leg relative to total skeletal activity was 20% with an average coefficient of variation of 13.63%. The Am activity in the knee as well as in the leg was strongly correlated (R = 99.5% and R = 99.1%, respectively) with the amount of Am activity in the entire skeleton using a simple linear relationship. The highest correlation was found between the amount of Am deposited in the knee and the amount of Am deposited in the entire skeleton. This correlation is important because it might enable an accurate assessment of the total skeletal Am burden to be performed from in vivo monitoring of the knee region. In all analyzed cases, an excellent correlation (R = 99.9%) was found between the amount of Am activity in the knee and the amount of Am activity in the entire leg. The results of this study suggest three simple models: two models to predict the total skeletal activity based on either leg or knee activity, and the third model to predict the total leg activity based on knee activity. The results also suggest that the knee region is a suitable position for in vivo measurements of Am deposited in the bones and also for an accurate and efficient detection system. Detector efficiency should be apparently calibrated based on only the Am burden in the knee region bones instead of Am activity deposited in the entire leg.

MeSH terms

  • Adult
  • Americium / analysis*
  • Humans
  • Knee / radiation effects
  • Leg Bones / chemistry*
  • Male
  • Radiation Monitoring

Substances

  • Americium