Without chemotactic cues and structural support, cavitary brain lesions typically fail to recruit endogenous neural progenitor cells (NPCs). Toward resolving this, we engineered multifunctional biomaterials comprising injectable gelatin-hydroxyphenylpropionic acid (Gtn-HPA) hydrogels and dextran sulfate/chitosan polyelectrolyte complex nanoparticles (PCNs) that delivered stromal cell-derived factor-1α (SDF-1α). Over 7 d of interface with in vitro tissue simulant containing adult rat hippocampal NPCs (aNPCs) and their neuronal progeny, Gtn-HPA/SDF-1α-PCN hydrogels promoted chemotactic recruitment to enhance infiltration of aNPCs by 3- to 45-fold relative to hydrogels that lacked SDF-1α or vehicles to sustain SDF-1α release. When cross-linked with 0.85-0.95 mM HO, Gtn-HPA/SDF-1α-PCN hydrogels provided optimally permissive structural support for migration of aNPCs. Specific matrix metalloproteinase (MMP) inhibitors revealed that 42, 30, and 55% of cell migration into Gtn-HPA/SDF-1α-PCN hydrogels involved MMP-2, 3, and 9, respectively, demonstrating the hydrogels to be compatible toward homing endogenous NPCs, given their expression of similar MMPs. Interestingly, PCNs utilized FGF-2 found in situ to induce chemokinesis, potentiate SDF-1α chemotactic recruitment, and increase proliferation of recruited cells, which collectively orchestrated a higher number of migrated aNPCs. Overall, Gtn-HPA/SDF-1α-PCN hydrogels prove to be promising biomaterials for injection into cavitary brain lesions to recruit endogenous NPCs and enhance neural tissue repair/regeneration.