Structure and activity of strigolactones: new plant hormones with a rich future

Mol Plant. 2013 Jan;6(1):38-62. doi: 10.1093/mp/sss141. Epub 2012 Nov 30.

Abstract

Strigolactones (SLs) constitute a new class of plant hormones which are active as germination stimulants for seeds of parasitic weeds of Striga, Orobanche, and Pelipanchi spp, in hyphal branching of arbuscular mycorrhizal (AM) fungi and as inhibitors of shoot branching. In this review, the focus is on molecular features of these SLs. The occurrence of SLs in root exudates of host plants is described. The naming protocol for SL according to the International Union of Pure and Applied Chemistry (IUPAC) rules and the 'at a glance' method is explained. The total synthesis of some natural SLs is described with details for all eight stereoisomers of strigol. The problems encountered with assigning the correct structure of natural SLs are analyzed for orobanchol, alectrol, and solanacol. The structure-activity relationship of SLs as germination stimulants leads to the identification of the bioactiphore of SLs. Together with a tentative mechanism for the mode of action, a model has been derived that can be used to design and prepare active SL analogs. This working model has been used for the preparation of a series of new SL analogs such as Nijmegen-1, and analogs derived from simple ketones, keto enols, and saccharine. The serendipitous finding of SL mimics which are derived from the D-ring in SLs (appropriately substituted butenolides) is reported. For SL mimics, a mode of action is proposed as well. Recent new results support this proposal. The stability of SLs and SL analogs towards hydrolysis is described and some details of the mechanism of hydrolysis are discussed as well. The attempted isolation of the protein receptor for germination and the current status concerning the biosynthesis of natural SLs are briefly discussed. Some non-SLs as germinating agents are mentioned. The structure-activity relationship for SLs in hyphal branching of AM fungi and in repression of shoot branching is also analyzed. For each of the principle functions, a working model for the design of new active SL analogs is described and its applicability and implications are discussed. It is shown that the three principal functions use a distinct perception system. The importance of stereochemistry for bioactivity has been described for the various functions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Germination
  • Lactones / chemistry*
  • Lactones / metabolism*
  • Mycorrhizae / metabolism
  • Plant Growth Regulators / chemistry*
  • Plant Growth Regulators / metabolism*
  • Plant Shoots / growth & development
  • Structure-Activity Relationship

Substances

  • Lactones
  • Plant Growth Regulators