Gated silica mesoporous supports for controlled release and signaling applications

Acc Chem Res. 2013 Feb 19;46(2):339-49. doi: 10.1021/ar3001469. Epub 2012 Dec 6.

Abstract

Blending molecular and supramolecular advances with materials science has resulted in recent years in the development of new organic-inorganic hybrid materials displaying innovative functionalities. One appealing concept in this field is the development of gated nanodevices. These materials are prepared by grafting molecular or supramolecular caps onto the external surface of mesoporous inorganic scaffolds loaded with a particular cargo. The caps or "gates" can then be opened and the cargo delivered at will upon the application of a given stimulus. In this Account, we report some of the recent advances we have made in designing such materials for drug delivery and as new chromo-fluorogenic probes. For controlled release applications, we have prepared capped hybrid mesoporous supports capable of being selectively opened by applying certain physical and chemical stimuli. We report examples of gated materials opened by changes in pH (using polyamines as caps), light (employing spiropyran derivatives or gold nanoparticles), and temperature (using selected paraffins). We also report gated materials opened by enzymes that cleave capping molecules based on lactose, hydrolyzed starch, and peptides. The use of enzymes is especially appealing because molecular caps built of enzyme-specific sequences made of peptides or other cleavable molecules could allow on-command delivery of drugs and biomolecules in specialized contexts. In the second part of the manuscript, we revisit the possibility of using hybrid gated nanomaterials as sensory systems. In such systems, when target analytes interact with the cap, their presence triggers the transport of a dye from pores to the solution, resulting in a chromo-fluorogenic signal that allows their detection. Two approaches are possible. In the first one, pores remain open and the dye can diffuse into the solution, until the presence of a target analyte binds to receptors in the caps and closes the gate. In the second approach, the caps are closed and the presence of a target analyte induces pore opening and dye delivery. One of the most interesting properties of these sensory hybrid materials is their inherent amplification features, because few target analyte molecules can modulate the transport of a significant amount of dye molecules within the porous network. We describe such systems for the recognition and sensing of anionic (ATP, long-chain carboxylates, anionic surfactants, borate, and oligonucleotides), cationic (methylmercury), and neutral (nerve agent simulants and sulfathiazole) species.