Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs

Arch Pathol Lab Med. 2013 Sep;137(9):1247-54. doi: 10.5858/arpa.2012-0651-OA. Epub 2012 Dec 6.


Context: Early diagnosis of gram-negative bloodstream infections, prompt identification of the infecting organism, and appropriate antibiotic therapy improve patient care outcomes and decrease health care expenditures. In an era of increasing antimicrobial resistance, methods to acquire and rapidly translate critical results into timely therapies for gram-negative bloodstream infections are needed.

Objective: To determine whether mass spectrometry technology coupled with antimicrobial stewardship provides a substantially improved alternative to conventional laboratory methods.

Design: An evidence-based intervention that integrated matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, rapid antimicrobial susceptibility testing, and near-real-time antimicrobial stewardship practices was implemented. Outcomes in patients hospitalized prior to initiation of the study intervention were compared to those in patients treated after implementation. Differences in length of hospitalization and hospital costs were assessed in survivors.

Results: The mean hospital length of stay in the preintervention group survivors (n = 100) was 11.9 versus 9.3 days in the intervention group (n = 101; P = .01). After multivariate analysis, factors independently associated with decreased length of hospitalization included the intervention (hazard ratio, 1.38; 95% confidence interval, 1.01-1.88) and active therapy at 48 hours (hazard ratio, 2.9; confidence interval, 1.15-7.33). Mean hospital costs per patient were $45 709 in the preintervention group and $26 162 in the intervention group (P = .009).

Conclusions: Integration of rapid identification and susceptibility techniques with antimicrobial stewardship significantly improved time to optimal therapy, and it decreased hospital length of stay and total costs. This innovative strategy has ramifications for other areas of patient care.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Anti-Infective Agents / economics
  • Anti-Infective Agents / pharmacology
  • Anti-Infective Agents / therapeutic use*
  • Bacteremia / diagnosis
  • Bacteremia / drug therapy
  • Bacteremia / economics*
  • Cost-Benefit Analysis
  • Early Medical Intervention / economics
  • Evidence-Based Medicine / economics
  • Female
  • Gram-Negative Bacterial Infections / diagnosis
  • Gram-Negative Bacterial Infections / drug therapy
  • Gram-Negative Bacterial Infections / economics*
  • Hospital Costs / statistics & numerical data*
  • Hospitalization / economics
  • Humans
  • Length of Stay / economics
  • Length of Stay / statistics & numerical data
  • Male
  • Microbial Sensitivity Tests / economics
  • Middle Aged
  • Multivariate Analysis
  • Outcome Assessment, Health Care
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / economics
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization / methods*
  • Texas
  • Time Factors


  • Anti-Infective Agents