Antidepressants cause foot detachment from substrate in five species of marine snail

Mar Environ Res. 2013 Mar;84:24-30. doi: 10.1016/j.marenvres.2012.11.004. Epub 2012 Nov 23.

Abstract

Active Pharmaceutical Ingredients (APIs) are released into aquatic ecosystems through discharged sewage wastewater. Antidepressants are among those APIs often detected in wastewater effluent and have been recently reported to cause foot detachment from the substrate in freshwater snails. We tested the effects of four commonly prescribed antidepressants {fluoxetine ("Prozac"), fluvoxamine ("Luvox"), venlafaxine ("Effexor"), and citalopram ("Celexa") on adhesion to the substrate in five species of marine snails, three from the Pacific coast (Chlorostoma funebralis, Nucella ostrina, Urosalpinx cinerea) and two species from the Atlantic coast (Tegula fasciatus and Lithopoma americanum) of North America representing three different gastropod families. All antidepressants tested induced foot detachment from the substrate in all snail species in a mainly dose-dependent manner (p < 0.04-0.00000001). The lowest LOECs (lowest observed effect concentration) for antidepressants and snails were recorded for Lithopoma in 43.4 μg/L (100 nM) fluvoxamine and Chlorostoma in 157 μg/L (500 nM) venlafaxine and 217 μg/L (500 nM) fluvoxamine. The trochids and turbinids were 2-10× more sensitive to the antidepressants than the muricids. Latency to detachment was also dose dependent, with the fastest average times to detach seen in Chlorostoma and Lithopoma (7.33 and 13.16 min respectively in 3.13 mg/L venlafaxine). The possible physiological mechanisms regulating antidepressant-induced foot detachment in marine snails and the possible ecological consequences are discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antidepressive Agents / toxicity*
  • Aquatic Organisms / drug effects
  • North America
  • Snails / drug effects*
  • Water Pollutants, Chemical / toxicity*

Substances

  • Antidepressive Agents
  • Water Pollutants, Chemical