Kindling with stimulation of the dentate gyrus. II. Effects on evoked field potentials

Brain Res. 1990 Feb 19;509(2):257-65. doi: 10.1016/0006-8993(90)90550-u.

Abstract

Once daily for 60 days, male hooded rats received unilateral high-frequency stimulation in the hilus of the dentate gyrus (DG), at an intensity sufficient to evoke afterdischarge (AD). Every 2nd day, evoked potentials were recorded from the hilus following stimulation of the PP with single 0.1 ms pulses at 6 current intensities. Changes in synaptic excitability of the dentate granule cells were monitored by measuring the amplitudes of the population spikes; changes in the strength of excitatory synaptic transmission were monitored by measuring the slopes of the excitatory postsynaptic potentials (EPSPs). Control rats, which were not given kindling stimulation, were tested for changes in synaptic transmission and excitability in the same way, at comparable times. In general, hilar stimulation resulted in a large decrease in population spike amplitudes to below baseline and control levels, accompanied by a paradoxical potentiation of EPSPs. Population spike amplitudes decreased more in rats that developed generalized stage-5 seizures (Generalized group) than in rats that did not progress beyond partial seizures despite 60 days of stimulation (Partial group). Conversely, EPSP slopes increased more in the Partial group than in the Generalized group. These results suggest that kindling stimulation may potentiate responsiveness of the directly activated dentate granule cells to inputs from the PP, but at the same time suppress the output of the granule cells resulting from this input. Furthermore, the results indicate that kindling is more closely allied to the suppression of output than to the potentiation of responsiveness to input.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials
  • Animals
  • Electric Stimulation
  • Hippocampus / physiopathology*
  • Kindling, Neurologic*
  • Male
  • Rats
  • Seizures / physiopathology*