True 3q chromosomal amplification in squamous cell lung carcinoma by FISH and aCGH molecular analysis: impact on targeted drugs

PLoS One. 2012;7(12):e49689. doi: 10.1371/journal.pone.0049689. Epub 2012 Dec 6.

Abstract

Squamous lung carcinoma lacks specific "ad hoc" therapies. Amplification of chromosome 3q is the most common genomic aberration and this region harbours genes having role as novel targets for therapeutics. There is no standard definition on how to score and report 3q amplification. False versus true 3q chromosomal amplification in squamous cell lung carcinoma may have tremendous impact on trials involving drugs which target DNA zones mapping on 3q. Forty squamous lung carcinomas were analyzed by FISH to assess chromosome 3q amplification. aCGH was performed as gold-standard to avoid false positive amplifications. Three clustered patterns of fluorescent signals were observed. Eight cases out of 40 (20%) showed ≥8 3q signals. Twenty out of 40 (50%) showed from 3 to 7 signals. The remaining showed two fluorescent signals (30%). When corrected by whole chromosome 3 signals, only cases with ≥8 signals maintained a LSI 3q/CEP3 ratio >2. Only the cases showing 3q amplification by aCGH (+3q25.3-3q27.3) showed ≥8 fluorescent signals at FISH evidencing a 3q/3 ratio >2. The remaining cases showed flat genomic portrait at aCGH on chromosome 3. We concluded that: 1) absolute copy number of 3q chromosomal region may harbour false positive interpretation of 3q amplification in squamous cell carcinoma; 2) a case results truly "amplified for chromosome 3q" when showing ≥8 fluorescent 3q signals; 3) trials involving drugs targeting loci on chromosome 3q in squamous lung carcinoma therapy have to consider false versus true 3q chromosomal amplification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Squamous Cell / drug therapy
  • Carcinoma, Squamous Cell / genetics*
  • Carcinoma, Squamous Cell / pathology
  • Chromosome Duplication*
  • Chromosomes, Human, Pair 3 / genetics*
  • Gene Amplification
  • Humans
  • In Situ Hybridization, Fluorescence
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology

Grant support

This study was supported by the European Union FP7 Health Research Grant number HEALTH-F4-2008-202047. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.