High-intensity interval training increases in vivo oxidative capacity with no effect on P(i)→ATP rate in resting human muscle

Am J Physiol Regul Integr Comp Physiol. 2013 Mar 1;304(5):R333-42. doi: 10.1152/ajpregu.00409.2012. Epub 2012 Dec 19.

Abstract

Mitochondrial ATP production is vital for meeting cellular energy demand at rest and during periods of high ATP turnover. We hypothesized that high-intensity interval training (HIT) would increase ATP flux in resting muscle (VPi→ATP) in response to a single bout of exercise, whereas changes in the capacity for oxidative ATP production (Vmax) would require repeated bouts. Eight untrained men (27 ± 4 yr; peak oxygen uptake = 36 ± 4 ml·kg(-1)·min(-1)) performed six sessions of HIT (4-6 × 30-s bouts of all-out cycling with 4-min recovery). After standardized meals and a 10-h fast, VPi→ATP and Vmax of the vastus lateralis muscle were measured using phosphorus magnetic resonance spectroscopy at 4 Tesla. Measurements were obtained at baseline, 15 h after the first training session, and 15 h after completion of the sixth session. VPi→ATP was determined from the unidirectional flux between Pi and ATP, using the saturation transfer technique. The rate of phosphocreatine recovery (kPCr) following a maximal contraction was used to calculate Vmax. While kPCr and Vmax were unchanged after a single session of HIT, completion of six training sessions resulted in a ∼14% increase in muscle oxidative capacity (P ≤ 0.004). In contrast, neither a single nor six training sessions altered VPi→ATP (P = 0.74). This novel analysis of resting and maximal high-energy phosphate kinetics in vivo in response to HIT provides evidence that distinct aspects of human skeletal muscle metabolism respond differently to this type of training.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism*
  • Adult
  • Bicycling / physiology
  • Energy Metabolism / physiology
  • Exercise / physiology*
  • Humans
  • Hydrogen-Ion Concentration
  • Magnetic Resonance Spectroscopy
  • Male
  • Mitochondria / metabolism
  • Models, Biological
  • Muscle Contraction / physiology
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiology
  • Oxygen Consumption / physiology*
  • Phosphates / metabolism*
  • Rest / physiology
  • Young Adult

Substances

  • Phosphates
  • Adenosine Triphosphate