Dose sensitivity of three phantoms used for quality assurance in digital mammography

Phys Med Biol. 2013 Jan 21;58(2):N13-23. doi: 10.1088/0031-9155/58/2/N13. Epub 2012 Dec 21.

Abstract

Technical quality assurance (QA) is one of the key issues in breast cancer screening protocols. For this QA task, three different methods are commonly used to assess image quality. The European protocol suggests a contrast-detail phantom (e.g. the CDMAM phantom), while in North America the American College of Radiology (ACR) accreditation phantom is proposed. Alternatively, phantoms based on image quality parameters from applied system theory such as the noise-equivalent number of quanta (NEQ) are applied (e.g. the PAS 1054 phantom). The aim of this paper was to correlate the changes in the output of the three evaluation methods (CDMAM, ACR and NEQ) with changes in dose. We varied the time-current product within a range of clinically used values (40-140 mAs, corresponding to 3.5-12.4 mGy entrance dose and detector dose of 32-110 μGy). For the ACR phantom, the examined parameter was the number of detected objects. With the CDMAM phantom we chose the diameters 0.10, 0.13, 0.20, 0.31 and 0.5 mm and recorded the threshold thicknesses. With respect to the third method, we evaluated the NEQ at typical spatial frequencies to calculate the relative changes in NEQ. Plotting NEQ versus dose increment shows a linear relationship and can be described by a linear function (with R > 0.99). Every manually selectable current- time product increment can be detected. With the ACR phantom, the number of detected objects increases only in the lower dose range and reaches saturation at about 9 mGy entrance dose (80 μGy detector dose). The CDMAM can detect a 50% increase in dose over the examined dose range with all five diameters, although the increases of threshold thickness are not monotonous. We conclude that an NEQ-based method has the potential to replace the established detail phantom methods to detect dose changes in the course of QA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Mammography / instrumentation*
  • Mammography / standards
  • Phantoms, Imaging*
  • Quality Control
  • Radiation Dosage*
  • Radiographic Image Enhancement / instrumentation*
  • Radiographic Image Enhancement / standards