Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 7;49(3):536-46.
doi: 10.1016/j.molcel.2012.11.016. Epub 2012 Dec 20.

Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway

Affiliations
Free article

Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway

Georgios Ioannis Karras et al. Mol Cell. .
Free article

Abstract

Damaged DNA is an obstacle during DNA replication and a cause of genome instability and cancer. To bypass this problem, eukaryotes activate DNA damage tolerance (DDT) pathways that involve ubiquitylation of the DNA polymerase clamp proliferating cell nuclear antigen (PCNA). Monoubiquitylation of PCNA mediates an error-prone pathway by recruiting translesion polymerases, whereas polyubiquitylation activates an error-free pathway that utilizes undamaged sister chromatids as templates. The error-free pathway involves recombination-related mechanisms; however, the factors that act along with polyubiquitylated PCNA remain largely unknown. Here we report that the PCNA-related 9-1-1 complex, which is typically linked to checkpoint signaling, participates together with Exo1 nuclease in error-free DDT. Notably, 9-1-1 promotes template switching in a manner that is distinct from its canonical checkpoint functions and uncoupled from the replication fork. Our findings thus reveal unexpected cooperation in the error-free pathway between the two related clamps and indicate that 9-1-1 plays a broader role in the DNA damage response than previously assumed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources