Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans
- PMID: 23261866
- PMCID: PMC3562388
- DOI: 10.1016/j.neuropharm.2012.11.029
Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans
Abstract
Caffeine induces locomotor activation by its ability to block adenosine receptors. Caffeine is metabolized to several methylxanthines, with paraxanthine being the main metabolite in humans. In this study we show that in rats paraxanthine has a stronger locomotor activating effect than caffeine or the two other main metabolites of caffeine, theophylline and theobromine. As previously described for caffeine, the locomotor activating doses of paraxanthine more efficiently counteract the locomotor depressant effects of an adenosine A(1) than an adenosine A(2A) receptor agonist. In drug discrimination experiments in rats trained to discriminate a maximal locomotor activating dose of caffeine, paraxanthine, unlike theophylline, generalized poorly to caffeine suggesting the existence of additional mechanisms other than adenosine antagonism in the behavioral effects of paraxanthine. Pretreatment with the nitric oxide inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) reduced the locomotor activating effects of paraxanthine, but not caffeine. On the other hand, pretreatment with the selective cGMP-preferring phosphodiesterase PDE9 inhibitor BAY 73-6691, increased locomotor activity induced by caffeine, but not paraxanthine. Ex vivo experiments demonstrated that paraxanthine, but not caffeine, can induce cGMP accumulation in the rat striatum. Finally, in vivo microdialysis experiments showed that paraxanthine, but not caffeine, significantly increases extracellular levels of dopamine in the dorsolateral striatum, which was blocked by l-NAME. These findings indicate that inhibition of cGMP-preferring PDE is involved in the locomotor activating effects of the acute administration of paraxanthine. The present results demonstrate a unique psychostimulant profile of paraxanthine, which might contribute to the reinforcing effects of caffeine in humans.
Published by Elsevier Ltd.
Figures
Similar articles
-
Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice.Eur J Pharmacol. 1991 Jan 3;192(1):31-7. doi: 10.1016/0014-2999(91)90065-x. Eur J Pharmacol. 1991. PMID: 1828237
-
Effects of paraxanthine and caffeine on sleep, locomotor activity, and body temperature in orexin/ataxin-3 transgenic narcoleptic mice.Sleep. 2010 Jul;33(7):930-42. doi: 10.1093/sleep/33.7.930. Sleep. 2010. PMID: 20614853 Free PMC article.
-
Paraxanthine: Connecting Caffeine to Nitric Oxide Neurotransmission.J Caffeine Res. 2013 Jun;3(2):72-78. doi: 10.1089/jcr.2013.0006. J Caffeine Res. 2013. PMID: 24761277 Free PMC article.
-
Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects.Brain Res Brain Res Rev. 1992 May-Aug;17(2):139-70. doi: 10.1016/0165-0173(92)90012-b. Brain Res Brain Res Rev. 1992. PMID: 1356551 Review.
-
Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain.Front Biosci. 2008 Jan 1;13:2391-9. doi: 10.2741/2852. Front Biosci. 2008. PMID: 17981720 Review.
Cited by
-
Paraxanthine provides greater improvement in cognitive function than caffeine after performing a 10-km run.J Int Soc Sports Nutr. 2024 Dec;21(1):2352779. doi: 10.1080/15502783.2024.2352779. Epub 2024 May 9. J Int Soc Sports Nutr. 2024. PMID: 38725238 Free PMC article. Clinical Trial.
-
Renal and cardiac effects of the PDE9 inhibitor BAY 73-6691 in 5/6 nephrectomized rats.Pflugers Arch. 2024 May;476(5):755-767. doi: 10.1007/s00424-024-02915-2. Epub 2024 Feb 2. Pflugers Arch. 2024. PMID: 38305876
-
Effect of caffeine and other xanthines on liver sinusoidal endothelial cell ultrastructure.Sci Rep. 2023 Aug 17;13(1):13390. doi: 10.1038/s41598-023-40227-0. Sci Rep. 2023. PMID: 37591901 Free PMC article.
-
Paraxanthine safety and comparison to caffeine.Front Toxicol. 2023 Feb 2;5:1117729. doi: 10.3389/ftox.2023.1117729. eCollection 2023. Front Toxicol. 2023. PMID: 36818692 Free PMC article.
-
Beyond AOPs: A Mechanistic Evaluation of NAMs in DART Testing.Front Toxicol. 2022 Mar 7;4:838466. doi: 10.3389/ftox.2022.838466. eCollection 2022. Front Toxicol. 2022. PMID: 35295212 Free PMC article.
References
-
- Antoniou K, Papadopoulou-Daifoti Z, Hyphantis T, Papathanasiou G, Bekris E, Marselos M, et al. A detailed behavioral analysis of the acute motor effects of caffeine in the rat: involvement of adenosine A1 and A2A receptors. Psychopharmacology. 2005;183:154–162. - PubMed
-
- Arnaud MJ. Comparative metabolic disposition of [1-Me14C] caffeine in rats, mice, and Chinese hamsters. Drug Metab Dispos. 1985;13:471–478. - PubMed
-
- Arnaud MJ. Pharmacokinetics and metabolism of natural methylxanthines in animal and man. Handb Exp Pharmacol. 2011;200:33–91. - PubMed
-
- Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
