A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion

Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):791-6. doi: 10.1073/pnas.1211447110. Epub 2012 Dec 24.


Visible phenotypes based on locomotion and posture have played a critical role in understanding the molecular basis of behavior and development in Caenorhabditis elegans and other model organisms. However, it is not known whether these human-defined features capture the most important aspects of behavior for phenotypic comparison or whether they are sufficient to discover new behaviors. Here we show that four basic shapes, or eigenworms, previously described for wild-type worms, also capture mutant shapes, and that this representation can be used to build a dictionary of repetitive behavioral motifs in an unbiased way. By measuring the distance between each individual's behavior and the elements in the motif dictionary, we create a fingerprint that can be used to compare mutants to wild type and to each other. This analysis has revealed phenotypes not previously detected by real-time observation and has allowed clustering of mutants into related groups. Behavioral motifs provide a compact and intuitive representation of behavioral phenotypes.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior, Animal / classification
  • Behavior, Animal / physiology*
  • Caenorhabditis elegans / classification
  • Caenorhabditis elegans / genetics*
  • Caenorhabditis elegans / physiology
  • Genes / genetics*
  • Genetics, Behavioral / methods
  • Locomotion / genetics*
  • Locomotion / physiology
  • Models, Biological*
  • Pattern Recognition, Automated / methods
  • Phenotype*
  • Posture / physiology
  • Reproducibility of Results