FSHD myotubes with different phenotypes exhibit distinct proteomes

PLoS One. 2012;7(12):e51865. doi: 10.1371/journal.pone.0051865. Epub 2012 Dec 18.


Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4) gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL) method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS) to study FSHD myotubes. Primary CD56(+) FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the adjustment of a nuclear fractionation compatible with mass spectrometry allowed us to highlight alterations of proteins involved in mRNA processing and stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Caveolae / metabolism
  • Cells, Cultured
  • Humans
  • Muscle Fibers, Skeletal / metabolism*
  • Muscular Dystrophy, Facioscapulohumeral / metabolism*
  • Myoblasts / metabolism
  • Myosins / metabolism
  • Phenotype*
  • Protein Isoforms
  • Proteome*
  • Proteomics


  • Protein Isoforms
  • Proteome
  • Myosins

Grant support

This study was funded by the AFM: Association Française contre les Myopathies (http://www.afm-telethon.fr), grant A.B.#13120, pre-doctoral fellowship A.T.#13294; the ABMM : Association Belge contre les Maladies neuro-Musculaires (http://www.abmm.be), A.T. pre-doctoral fellowship; the FNRS (National Fund for Scientific Research, Belgium) and the FRIA (Fund for Research in Industry and Agriculture) (http://www1.frs-fnrs.be), A.T. post-doctoral fellowship #2007/V 3/5/180-F/3/5/5-IB/CAV-8864, C.V. pre-doctoral fellowships; the FSHD Global Research Foundation, Australia (http://www.fshdglobal.org/), C.V. pre-doctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.