Rapid dopamine dynamics in the accumbens core and shell: learning and action

Front Biosci (Elite Ed). 2013 Jan 1;5(1):273-88. doi: 10.2741/e615.

Abstract

The catecholamine dopamine (DA) has been implicated in a host of neural processes as diverse as schizophrenia, parkinsonism and reward encoding. Importantly, these distinct features of DA function are due in large part to separate neural circuits involving connections arising from different DA-releasing nuclei and projections to separate afferent targets. Emerging data has suggested that this same principle of separate neural circuits may be applicable within structural subregions, such as the core and shell of the nucleus accumbens (NAc). Further, DA may act selectively on smaller ensembles of cells (or, microcircuits) via differential DA receptor density and distinct inputs and outputs of the microcircuits, thus enabling new learning about Pavlovian cues, instrumental responses, subjective reward processing and decision-making. In this review, by taking advantage of studies using subsecond voltammetric techniques in behaving animals to study how rapid changes in DA levels affect behavior, we examine the spatial and temporal features of DA release and how it relates to both normal learning and similarities to pathological learning in the form of addiction.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Decision Making / physiology*
  • Dopamine / metabolism*
  • Dopaminergic Neurons / metabolism*
  • Humans
  • Learning / physiology*
  • Motivation / physiology*
  • Nucleus Accumbens / metabolism
  • Nucleus Accumbens / physiology*
  • Reward*

Substances

  • Dopamine