Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(12):e51637.
doi: 10.1371/journal.pone.0051637. Epub 2012 Dec 19.

The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence

Affiliations
Free PMC article

The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence

Matthew L Dixon et al. PLoS One. 2012.
Free PMC article

Abstract

Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel 'free-choice' versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Behavioral Results.
Percentage (%) of choices in which cognitive control was selected during the free-choice period as a function of expected monetary rewards. Error bars represent one (within-subject) standard error of the mean based on Loftus and Masson .
Figure 2
Figure 2. Trial Structure for the fMRI Experiment.
After a variable duration fixation cross, an instruction cue signaled the currently relevant rules (profile of faces = male/female rule; book = abstract/concrete rule) and whether or not to expect a monetary reward (blue vase = no money; bills = 25¢). This was followed by a variable duration delay period and then a word or face stimulus, during which subjects made a button response. Finally, a screen revealed whether money had been earned on that trial and cumulative winnings. On key trials, a second instruction cue appeared before the stimulus. Across the two instruction cues, we varied whether there was repetition of the rules, expected reward, both, or neither.
Figure 3
Figure 3. Regions Showing Repetition Enhancement for Repetition of a Specific Rule-Outcome Pairing (Z>2.57, p<.05 FWE cluster corrected for the whole-brain).
A. Right lateral view showing regions of the LPFC exhibiting this effect. B. Activation time-course for the IFS, IFJ, and posterior DLPFC time-locked to the onset of the second instruction. The color scale denotes t-values. Nov = novel, rep = repeated. Error bars represent one (within-subject) standard error of the mean based on Loftus and Masson .
Figure 4
Figure 4. Regions Exhibiting Functional Connectivity with the IFS Across the Entire Time-Course (Z>2.57, p<.05 FWE cluster corrected for the whole-brain).
Rule areas (blue arrows) include bilateral lateral prefrontal cortex (LPFC), anterior mid-cingulate cortex/dorsomedial prefrontal cortex (aMCC/DMPFC), posterior middle temporal gyrus (pMTG), and intraparietal sulcus (IPS). Reward areas (red arrows) include rostral anterior and posterior cingulate cortices (rACC, PCC), orbitofrontal cortex (OFC), caudate/nucleus accumbens (NAcc), and insula. The color scale denotes t-values, and the numerical values above the images correspond to MNI coordinates. For axial and coronal slices, the right hemisphere is on the right side of the image. LH = left hemisphere, RH = right hemisphere.

Similar articles

Cited by

References

    1. Rangel A, Camerer C, Montague PR (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9: 545–556. - PMC - PubMed
    1. Walton ME, Behrens TE, Buckley MJ, Rudebeck PH, Rushworth MF (2010) Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65: 927–939. - PMC - PubMed
    1. Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci 30: 31–56. - PubMed
    1. Gottfried JA, O'Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301: 1104–1107. - PubMed
    1. Diekhof EK, Gruber O (2010) When desire collides with reason: functional interactions between anteroventral prefrontal cortex and nucleus accumbens underlie the human ability to resist impulsive desires. J Neurosci 30: 1488–1493. - PMC - PubMed

Publication types

Grants and funding

This work was supported by the Natural Sciences and Engineering Council of Canada, grant #05-5918 (to KC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.