Genomic imprinting is a parental effect established in mammalian germ cells

Curr Top Dev Biol. 2013:102:35-59. doi: 10.1016/B978-0-12-416024-8.00002-7.

Abstract

Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • DNA Methylation / genetics
  • Disease / genetics
  • Genomic Imprinting / genetics*
  • Germ Cells / metabolism*
  • Humans
  • Mammals / genetics*
  • Pluripotent Stem Cells / metabolism